A Two-Box Model of a Zonal Atmospheric Circulation in the Tropics
نویسندگان
چکیده
A simple fixed-SST model of a zonal circulation in the tropical atmosphere has been developed that has separate boxes for the ascending and descending branches of the atmospheric circulation. This circulation resembles the Walker circulation. This is the first box model to determine the fractional widths of the warm and cold pools. The atmospheric model contains an explicit hydrologic cycle, a simplified but physically based radiative transfer parameterization, and interactive clouds. Results indicate that the intensity of the tropical circulation is crucially dependent on the amount and vertical distribution of water vapor above the cold-pool boundary layer (CPBL). In response to increasing precipitable water over the CPBL, the radiative cooling rate of the free troposphere increases. To a good approximation, subsidence warming balances radiative cooling in the subsiding branches of the circulation. If the fractional width of the cold pool (CP) does not change too much, the circulation must intensify as the subsidence rate increases. To compensate for a stronger circulation and to restore energy balance in the Walker cell, the precipitable water over the warm pool (WP) must decrease. A ‘‘moist-outflow’’ experiment shows that the Walker circulation intensifies if air is advected to the subsiding regions from lower altitudes in the WP. As the advection level decreases, air supplied to the CP becomes warmer and moister, and so the column water vapor in the CP free troposphere increases. The mechanism described above then leads to a strengthening of the circulation. This moist-outflow experiment also shows that when the authors try to moisten the atmosphere by specifying a lower advection level for water vapor, the atmosphere adjusts so as to dry out. This effect is very strong.
منابع مشابه
Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua‐planet model
[1] Sensitivities of tropospheric winds and stratospheric Brewer‐Dobson Circulation (BDC) to SST warming are explored in an aqua‐planet atmospheric general circulation model. The tropospheric zonal wind change is quite sensitive to the location and sign of the gradient of SST perturbations with respect to the climatological jet. For the experiments with low latitude warming, the Hadley cell is ...
متن کاملAutumn Rainfall Anomalies and Regional Atmospheric Circulation along Establishment of Weak La Nina after Strong El Nino in Iran
To study the Iran precipitation anomaly in September to November of 2016 and its probable connection with ENSO (El Nino-Southern Oscillation). This period with similar cases in the previous 55 years (1964, 1983, and 1995 according to forecasting center of NOAA) was investigated. In all cases, ENSO changed from strong El-Nino to weak La-Nina after a very brief neutral period. In the following, o...
متن کاملStudy of the models of large-scale atmospheric circulation system model on intesify rainfall in Ardebil plain
Atmospheric circulation is important to determine the surface climate and environment, and affect regional climate and surface features. In this study, to quantify its effect, the classification system, developed by Lamb is applied to obtain circulation information for Ardabil, North West Province in Iran, on a daily basis, and is a method to classify synoptic weather for study area. For that p...
متن کاملStructure and variances of equatorial zonal circulation in a multimodel ensemble
The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and intercompared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEPNCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (...
متن کاملDelineating the Eddy–Zonal Flow Interaction in the Atmospheric Circulation Response to Climate Forcing: Uniform SST Warming in an Idealized Aquaplanet Model
The mechanisms of the atmospheric response to climate forcing are analyzed using an example of uniform SSTwarming in an idealized aquaplanet model. A 200-member ensemble of experiments is conductedwith an instantaneous uniform SSTwarming. The zonal mean circulation changes display a rapid poleward shift in the midlatitude eddy-driven westerlies and the edge of the Hadley cell circulation and a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009